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Energy-conserving low-order models for three-dimensional Rayleigh-Be´nard convection
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Constructing hydrodynamic low-order models in the form of coupled gyrostats eliminates the possibility of
certain unphysical behaviors, such as solutions diverging to infinity, that often appear in models resulting from
ad hoctruncations of Galerkin approximations. In this paper, a simple low-order model in a gyrostatic form
that conserves energy in the dissipationless limit~Model I! is constructed for three-dimensional~3D! Rayleigh-
Bénard convection. It can be considered an energy-conserving extension of the model by Daset al. @Phys. Rev.
E 62, R3051~2000!# ~Model II! that does not conserve energy and possesses solutions diverging to infinity.
Also studied here is a smaller but energy-conserving subsystem of Model I that has the form of two coupled
gyrostats~Model III!. This new system is the 3D analog of the celebrated Lorenz model@J. Atmos. Sci.20, 130
~1963!#. Stability diagrams and heat transport behavior are calculated and compared for the three models.
Model I has improved qualitative agreement with experimental observations compared to that of Model II and
Model III.

DOI: 10.1103/PhysRevE.65.046306 PACS number~s!: 47.20.Ky, 05.45.2a, 47.20.Bp, 47.54.1r
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I. INTRODUCTION

Low-order models~LOMs! are low-dimensional dynami
cal systems, composed of ordinary differential equatio
that are used to qualitatively investigate an underlying s
tem of partial differential equations@1,2#. In theoretical fluid
dynamics, LOMs have repeatedly shown their merit, as t
have been used~for example! to demonstrate the possibilit
of chaos@3# and the spontaneous development of shea
instabilities @4# in thermal convection. A more recent ex
ample is the use of LOMs to understand a self-sustain
process in wall-bounded shear flows@5#. LOMs known as
shell models are used to investigate turbulent cascade
cesses@6#.

LOMs are commonly obtained by implementing a spe
tral Galerkin approximation. The hydrodynamic fields a
expanded in infinite series of time-independent, orthogo
eigenfunctions that satisfy the boundary conditions. The
ries are then truncated and the remaining finite set of tim
dependent ‘‘Fourier’’ coefficients satisfy a set of couple
nonlinear ordinary differential equations~the LOM!. This
methodology has been pioneered by, e.g., Saltzman@7#, Lo-
renz @1,3,8#, and Obukhov@9#. Although the use of LOMs
has a number of limitations, when carefully employed th
continue to be successful in providing insights for hydrod
namic problems.

One limitation is that the modes retained in the trun
tions are often chosen in anad hoc way, resulting in the
possibility of unphysical behavior@10#. General principles
for physically motivated choices are required. One propo
is to choose truncations resulting in LOMs that are forma
equivalent to equations for coupled three-mode syste
known in mechanics asVolterra gyrostats, in a forced, dissi-
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pative regime@11#. The Volterra gyrostat~e.g.,@12#!,

v̇15pv2v31bv32cv2 ,

v̇25qv3v11cv12av3 , ~1!

v̇35rv1v21av22bv1 ,

wherea, b, c, p, q, and r are constants such thatp1q1r
50, andv1 , v2, andv3 are state variables that describe t
dynamics of the system, can be thought of as a rigid bo
containing a rotor revolving with a constant angular veloc
about an axis fixed in the carrier. Damping and forcing ter
may be added to the system. The gyrostats that appea
LOMs are usually not of the general form~1! but rather one
of its special cases. For instance, the widely known Lore
model @3# has the form of Eq.~1! but with r 5b5c50 and
with additional friction and forcing terms, as can be se
after a linear change of variables@11#. This version of the
gyrostat will be referred to as theLorenz gyrostat. Another
gyrostat commonly encountered in LOMs is theEuler gyro-
scope, wherea5b5c50 so that only the three nonlinea
terms are present. For a thorough discussion of Eqs.~1!,
including the relationships between the fluid dynamical a
rigid bodies interpretations of the gyrostat, see@13#.

Coupled gyrostats possess a number of features, sh
with the underlying Navier-Stokes equations@13# that
Obukhov @9# and Lorenz @3,8# considered desirable fo
LOMs: ~i! they are quadratically nonlinear;~ii ! in the dissi-
pationless limit, they have at least one quadratic integra
motion; they also conserve state space volume~since
( i] v̇ i /v i50, which implies a Liouville theorem!; ~iii ! their
solutions are bounded~even when there is linear viscous fric
tion and constant forcing!. In the rigid body interpretation of
Eqs.~1!, there are two quadratic invariants corresponding
kinetic energy and squared angular momentum. In coup
©2002 The American Physical Society06-1
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gyrostatic LOMs for fluid dynamical problems, quadratic i
tegrals of motion may be interpreted as some sort of ene
in three-dimensional~3D! problems~Sec. II C! or as the en-
ergy and the enstrophy in 2D problems~e.g., @14#!. Mean-
while, the Liouville equation is known to be a general pro
erty of dissipationless hydrodynamic systems@15#.

Moreover, LOMs in the form of coupled gyrostats posse
a modular structure, with gyrostats as elementary ‘‘build
blocks.’’ In other words, adding more physical effects in t
fluid model, e.g., rotation, topography, and magnetic fie
results in adding linear gyrostatic terms to existing gyros
@13,16#, while increasing the order of approximation ad
additional gyrostats. In the usualad hocapproach, it is usu-
ally unclear how to increase the order of approximat
while preserving the conservation and boundedness pro
ties indicated above. However, these properties are alw
preserved if the LOM is extended by modifying and/or ad
ing gyrostat ‘‘building blocks’’ to the system.

In this paper we develop LOMs in the form of couple
gyrostats forthree-dimensionalRayleigh-Bénard convection.
This classical problem considers the buoyancy-driven cir
lation in a shallow layer of fluid contained between two ho
zontal, isothermal surfaces~the lower one kept at higher tem
perature than the upper one! in the presence of a consta
vertical gravitational field~e.g. @17,18#!. One of the earliest
LOMs for Rayleigh-Be´nard convection was that of Saltzma
@7#, which directly led to the Lorenz model@3#. Similar to
nearly all subsequent studies, both authors assumedtwo-
dimensionalflow. There have also been several LOM stud
of 3D convection@19–22#. However, except for@20#, these
studies did not explicitly implement the principle that tot
energy should be conserved by a LOM in the dissipation
limit ~in this paper, ‘‘energy conservation’’ will always mea
‘‘energy conservation in the dissipationless limit’’!. This
principle has been advocated by several investigators~e.g.,
@9–11,13,23,24#! and is usually implemented in shell mode
@6#.

In Sec. II, a LOM in the form of coupled gyrostats for th
problem of 3D Rayleigh-Be´nard convection~Model I! is de-
rived. It contains, as a subsystem, an interesting LO
~Model II! recently introduced by Daset al. @22# to study 3D
convection. It is shown, however, that Model II does n
have the coupled gyrostats structure and, consequently,
not, in general, conserve energy. Another subsystem
Model I is thesimplestLOM for 3D convection~Model III!,
the 3D analog of the Lorenz model. It is composed of t
coupled Lorenz models, each representing motion in e
horizontal direction, and similar to the original Loren
model, it conserves energy. We also refer to Model III as
‘‘3D Lorenz model.’’

The dynamics of the models is analyzed in Sec. III. La
of energy conservation in Model II results in unphysical s
lutions diverging to infinity. As systems of coupled gyrosta
Model I and Model III, in contrast, do not have such und
sirable behavior. Model III has multiple, neutrally stab
steady-state solutions in the same parameter region. On
other hand, Model’s I stability regime diagram is more co
sistent with experimental results than that for Model III. B
yond the threshold for stable steady-state solutions, Mod
04630
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has periodic solutions involving ‘‘asymmetric squares
analogous to those found in Model II@22#, but the heat trans-
port behavior for this solution in Model I is more consiste
with experimental results than it is in Model II. Conclusion
are presented in Sec. IV.

II. THE MODELS

A. Model I: Derivation

Consider a layer of fluid confined between two stress-f
horizontal surfaces at altitudesz50,h. ~The unit vectorsx,
y, z are associated with the spatial coordinatesx,y,z, respec-
tively.! Horizontal periodic boundary conditions, with per
odicity 2L, are assumed; define the aspect ratioa5h/L. The
temperatureT is uniform on thez50 surface with valueT0
and uniform on thez5h surface with valueT02dT, dT
.0. The Oberbeck-Boussinesq equations@25# for the hydro-
dynamic fieldsv ~velocity!, p ~pressure!, and T are as fol-
lows:

“•v50, ~2!

]v

]t
1~v•“ !v52

“p

r0
2@12a~T2T0!#gẑ1n¹2v, ~3!

]T

]t
1~v•“ !T5k¹2T, ~4!

where t is time and the following quantities are assum
constant:n, the kinematic viscosity;k, the thermal diffusiv-
ity; a, the thermal expansion coefficient;g, the gravitational
field; and r0, the mass density atT5T0. These equations
represent the balances of mass, momentum, and therma
ergy, respectively. Letu/p be the temperature deviation from
the conductive steady-state profile. Also define the Rayle
number asR5agdTh3/kn and the Prandtl number ass
5n/k. The Nusselt number, which characterizes the h
transport efficiency in a convecting fluid, is

Nu512
h

pdT K ]u

]z U
z50,h

L , ~5!

where the angle brackets denote a horizontal area aver
The evaluation of the partial derivative atz50 and z5h
should give the same result, unless there is a heat sourc
sink within the layer, not just at the boundaries.

The equations in a dimensionless form are obtained
transformations@10#: x, y, andz are normalized byh/p, T is
normalized bydT, and time is normalized by the fluid’s
Brunt-Väisälä period t5Ah/(gadT). Finally, pressure is
normalized byr0h2/p2t2 and the kinematic viscosity an
thermal diffusivity are both normalized byh2/p2t. The re-
sulting nondimensional equations~in vorticity form! are as
follows:

“•v50, ~6!

“3v5z, ~7!
6-2
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]z

]t
5~z•“ !v2~v•“ !z1n¹2z1S x

]u

]y
2y

]u

]xD , ~8!

]u

]t
52v•“u1vz1k¹2u, ~9!

with the Rayleigh and Prandtl numbers, respectively,

R5
p4

nk
, s5

n

k
.

The stress-free boundary conditions at the top and bottom
the layer~now z50,p) are as follows:

vzuz50,p5
]vx

]z U
z50,p

5
]vy

]z U
z50,p

5uuz50,p50.

Horizontal periodic boundary conditions, with period 2p/a,
are also assumed.

Consider the following expansions in~truncated! Fourier
series:

vx5x1~ t !sin~ax!cos~z!1w1~ t !sin~ax!cos~ay!cos~2z!,
~10a!

vy5y1~ t !sin~ay!cos~z!1w1~ t !cos~ax!sin~ay!cos~2z!,
~10b!

vz52ax1~ t !cos~ax!sin~z!2ay1~ t !cos~ay!sin~z!

2aw1~ t !cos~ax!cos~ay!sin~2z!, ~10c!

u5u101~ t !cos~ax!sin~z!1u011~ t !cos~ay!sin~z!

1u002~ t !sin~2z!1u112~ t !cos~ax!cos~ay!sin~2z!

1u004~ t !sin~4z!. ~10d!

This choice retains a set of Lorenz@3# modes for each hori-
zontal direction, plus one interaction mode each for veloc
w1 and temperatureu112, and an additional modeu004 whose
role will be explained shortly. These expansions result i
low-order model with the following equations:

ẋ152n~11a2!x12
a

11a2
u1012

a

4
w1y1 , ~11a!

ẏ152n~11a2!y12
a

11a2
u0112

a

4
w1x1 , ~11b!

ẇ1522n~21a2!w12
a

21a2
u1121a

11a2

21a2
x1y1 ,

~11c!

u̇10152k~11a2!u1012ax12ax1u002 ~11d!

2
a

4
u112y1 , ~11e!
04630
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u̇01152k~11a2!u0112ay12ay1u0022
a

4
u112x1 ,

~11f!

u̇002524ku0021
a

2
u101x11

a

2
u011y1 , ~11g!

u̇112522k~21a2!u1122aw11
a

2
u011x11

a

2
u101y1

22au004w1 , ~11h!

u̇0045216ku0041
a

2
u112w1 . ~11i!

This model has three parameters:a, the aspect ratio;n, the
nondimensional kinematic viscosity; andk, the nondimen-
sional thermal diffusivity. The critical Rayleigh number
which the conduction~trivial! solution loses stability is

Rc5
p4~11a2!3

a2
, ~12!

and the normalized Rayleigh number is defined asr̃
5R/Rc . Finally, the Nusselt number for the model becom

Nu512K ]u

]z U
z50,p

L 5122u00224u004. ~13!

B. Model I: Coupled gyrostats structure

Consider the linear transformation of Model I~11! based
on the following change of variables:

X5
a

A2
x1 , u252

a2

A2~11a2!
u101,

Y5
a

A2
y1 , u352

a2

A2~11a2!
u011,

W5
a

2
A21a2

11a2
w1 , u45

a2

11a2
u0041S 112a2

2~11a2!
D ,

~14!

u15
a2

11a2
u0021S 112a2

11a2 D , u552
a2

2~11a2!
u112.

In the new variables, model~11! exhibits the structure of six
coupled gyrostats
6-3
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where a154k, a25a35k(11a2), a4516k, a552k(2
1a2), ax5ay5n(11a2), aw52n(21a2), f 154k(1
12a2)/(11a2), f 252 f 1, and b5A(11a2)/(21a2). The
vertical bars are used to organize the model into a supe
sition of gyrostat ‘‘building blocks.’’ It is evident that the
model can be decomposed into six gyrostats: I and II
Lorenz gyrostats involvingX, u1 , u2 andY, u1 , u3, respec-
tively; III is another Lorenz gyrostat involvingW, u4 , u5; IV
and V are degenerative Euler gyroscopes involvingX, u3 , u5
and Y, u2 , u5, respectively; and VI is an Euler gyroscop
involving only the three velocity modesX, Y, and W. The
remaining terms on the immediate right of the equal sig
represent friction~the a ’s! and external forcing (f 1 and f 2)
in the gyrostat interpretation.

C. Model I: Conservation of energy

It can be easily seen that in any system of coupled
rostats, the sum of squares(xi

2 of all variables is conserved
in the absence of forcing and friction, which guarante
boundedness of solutions@13#. In Rayleigh-Be´nard convec-
tion, this quantity is simply related to the kinetic energy, to
potential energy, and the available potential energy, res
tively, in nondimensional variables

K5
1

2EV
v2dV,

U52E
V
uzdV,

A52
1

2EV
u2dV,
04630
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where the integration is over a volumeV comprising one
‘‘cell’’ of the horizontally periodic fluid layer. The available
potential energyA is the portion ofU available for conver-
sion into kinetic energy~see@13# for further discussion and
references therein!. In the limits n→0 andk→0, the LOM
should conserve both the total energyK1U and the ‘‘un-
available energy’’U2A @13#. For Model I, these two qua
dratic integrals of motion are

K1U5~11a2!~x1
21y1

2!1
1

2
~21a2!w1

214u00212u004,

~16a!

U2A5u101
2 1u011

2 1
1

2
u112

2 12u002
2 14u00212u004

2 12u004,

~16b!

and are indeed both conserved in the dissipationless li
~Here, some constant terms and common factors are
nored.! In the variables~14!, the two quadratic energy invari
ants~in the dissipationless limit! take the form

K1U5X21Y21W212u11u4 ,

U2A5S 11a2

a2 D ~u1
21u2

21u3
21u4

21u5
222u12u4!,

so that their linear combination,

~K1U !1
a2

11a2
~U2A!5X21Y21W21u1

21u2
21u3

2

1u4
21u5

2 , ~17!
6-4
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FIG. 1. Time series solution foru112 in Model II ~a! and Model I ~b!, with a51/A2, s510, r̃ 519, initial conditionsu112(0)510,
w1(0)5210, and all other variables zero.~All quantities are nondimensional.! The solution~a! illustrates the pathological divergence
infinity that is possible in Model II. In contrast, the solution for Model I~b! achieves an~unstable! steady state withu112'20.2811,w1

'0.0570, andu004'20.0127.
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is also an integral of motion. This latter quantity is the afo
mentioned sum of squares of all the variables, which is
ways conserved in any system of coupled gyrostats.

Besides energy, there is another quadratic integral of
tion for dissipationless 3D flow: the total helicity,v•z/2, in-
tegrated overV. However, in the truncations used for a
models considered in this paper, the helicity is identica
zero.

D. Model II

Excluding theu004 term, representing the sin(4z) mode in
the temperature expansion~10d!, results in the seven-mod
model recently introduced by Daset al. @22# ~Model II!.
Note that Model II is actually a reduced version of the mu
larger model of Rucklidge and co-workers@21#, which is also
missing the important sin(4z) mode in the temperature ex
pansion. The need for the sin(4z) mode is motivated by the
fact that Model II has pathological solutions that expone
tially diverge to infinity, such as the one illustrated in Fi
1~a!, while inclusion of the sin(4z) mode~that leads to Model
I! removes the pathology, as illustrated in Fig. 1~b!.

To gain insight into the reason behind this, note th
Model II has an invariant manifold,

x15y15u1015u0115u00250, ~18!

on which the equations for the remaining variables,w1 and
u112, are linear and give unstable solutions forR.Rc2
54p4(21a2)3/a2. Model I does not have this invarian
manifold due to the presence of Eq.~11h! representing the
sin(4z) mode.

To put it differently, lack of the sin(4z) mode in Model II
makes it impossible to transform it into coupled gyrosta
nonlinear terms in gyrostat III are then absent while line
terms have the same~not opposite! sign, causing violation of
the energy conservation. Indeed, with the sin(4z) mode miss-
ing in Model II, both the total energyK1U and the ‘‘un-
04630
-
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available energy’’U2A are not conserved; in fact, in tha
model, the rate of change of energy in the dissipationl
limit is

d

dt
~K1U !5

d

dt
~U2A!52au112~ t !w1~ t !,

which is not, in general, zero. In contrast, in Model I, th
above rate of change is zero. Therefore, adding the sinz)
mode to the temperature expansion~10d!, restores conserva
tion of energy and thus ensures that solutions are bound

These observations are similar to those for the How
and Krishnamurti@4# model of 2D Rayleigh-Be´nard convec-
tion with spontaneously generated vertical shear@24#. They
clearly demonstrate thatone should never assume that
Galerkin approximation always conserves energyin the dis-
sipationless limit, although for 2D homogeneous inco
pressible flow, withonly mechanical~not thermal! forcing,
Galerkin approximationsdo conserve energy@8#.

E. Model III „3D Lorenz model…

If the w1 , u112, andu004 modes are removed from Eqs
~11!, the resulting five-mode model constitutes the simpl
model of three-dimensional Rayleigh-Be´nard convection: the
3D analog of the Lorenz@3# model,

ẋ152n~11a2!x12
a

11a2
u101, ~19a!

ẏ152n~11a2!y12
a

11a2
u011, ~19b!

u̇10152k~11a2!u1012ax12ax1u002, ~19c!

u̇01152k~11a2!u0112ay12ay1u002, ~19d!
6-5
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u̇002524ku0021
a

2
u101x11

a

2
u011y1 , ~19e!

with Nusselt number Nu5 122u002. This five-mode sys-
tem has the form of two coupled Lorenz models, one
each horizontal direction. This may be verified by restricti
the flow to, say, thex-z plane (y1[u011[0). The resulting
three-mode system is the original Lorenz model, as can
seen after a linear change of variables~e.g.,@16#!. Similarly,
restricting the flow to they-z plane (x1[u101[0) results in
another three-mode Lorenz model. Therefore, including
five modes produces theminimalLOM for three-dimensional
Rayleigh-Bénard convection. This five-mode model~19! will
hereafter be referred to as the ‘‘3D Lorenz model’’ while t
original three-mode Lorenz model@3# will be called the ‘‘2D
Lorenz model.’’ We are not aware of any previous studies
the 3D Lorenz model, despite the fact that it is a simple a
natural generalization of the 2D Lorenz model.

In variables~14!, the 3D Lorenz model~19! becomes a
system of two coupled Lorenz gyrostats I and II, where
first one describes motion in thex-z plane and the secon
one describes motion in they-z plane. The associated fric
tion and forcing terms are also present

~20!

where f 1 and thea ’s are as before. The same linear com
nation ~17!, without theW, u4 , u5 terms, is an integral of
motion here and has the form of the sum of squares of all
variables.

The 3D Lorenz model~19! also conserves both total en
ergy and ‘‘unavailable energy’’ in the limitsn→0 and k
→0, since in this case, the quantitiesK1U and U2A are
the evident modifications of those in Eqs.~16! ~set w150,
u11250, andu00450). It is also known that the original 2D
Lorenz model conserves the same two integrals of mo
@13#.

In the dissipationless limit (n→0 andk→0), system~20!
has a Hamiltonian structure with Hamiltonian,

H5
1

2
~X21Y21u1

21u2
21u3

2!,

the generalized Poisson bracket,

@ f ,g#5
] f

]x

]g

]u2
1

] f

]y

]g

]u3
2

] f

]u1
S x

]g

]u2
1y

]g

]u3
D

1
] f

]u2
S x

]g

]u1
2

]g

]xD1
] f

]u3
S y

]g

]u1
2

]g

]yD ,
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for any two functionsf andg, and the Casimir invariant,

C5X21Y212u1 ,

which satisfies@C,g#50 for anyg.
The Euler gyroscope, a three-dimensional rigid body,

an analog on the Lie algebra of group SO(n), which can be
interpreted as ann-dimensional Euler gyroscope@26#. Simi-
larly, the Volterra equations for a three-dimensional rig
body can be generalized ton dimensions@11#. System~20!
was formulated in @11# as an example of the four
dimensional gyrostat.

III. DYNAMICS

A. Analysis of the 3D Lorenz model„Model III …

Similar to the 2D Lorenz model@3#, the 3D Lorenz model
has a conduction steady state~where all variables are zero!
that loses stability at the critical Rayleigh numberRc given
by Eq. ~12!, which has its minimum value, 27p4/4, at the
critical aspect ratioac51/A2. This regime also results from
the stability analysis of the original Oberbeck-Boussine
equations@27#.

Above the critical Rayleigh number, there are an infin
number of nontrivial steady-state solutions, all of which ha
the form

x1
21y1

25
8

s~11a2!2 S 12
Rc

R D , ~21a!

u10152x1ARc

R
@s~11a2!#, ~21b!

u01152y1ARc

R
@s~11a2!#, ~21c!

u00252S 12
Rc

R D , ~21d!

and the following relation between the Nusselt and Rayle
numbers:

Nu5112S 12
Rc

R D , ~22!

which again agrees with the corresponding result for the s
ondary~roll! solution of the 2D Lorenz model as well as th
stability analysis of the Oberbeck-Boussinesq equations@28#.
Finally, all steady states~21! are neutrally stable in thesame

parameter region, 1, r̃ , r̃ 0, where

r̃ 05
s~s1b13!

s2b21
~23!

andb54/(11a2). This is the same secondary critical Ra
leigh number at which the roll solution loses stability in th
2D Lorenz model@3#. In Model III, roll solutions occur in
either thex-z or y-z planes. In addition, solutions~21! in-
6-6
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FIG. 2. Contour plots of vertical velocity at midplane (z5p/2) for neutrally stable steady-state solutions of the 3D Lorenz model~Model
III !: ~a! roll planform, ~b! symmetric square planform, and~c! ‘‘asymmetric square’’ planform. Axes scales are nondimensional.
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clude 3D patterns: symmetric square convection cells,
intermediate planforms that could be characterized as as
metric square cells, similar to those observed by Daset al.
@22# in a time-varying regime of Model II. Both 2D and 3D
solutions of Model III are shown in Fig. 2. It should be not
that weakly nonlinear convection only has the roll form
onset@17,18#, in contrast to the situation in Model III.

Experimentally, the observation of both 2D and 3D co
vection patterns in the same parameter region has been
served@29#, although in this case the 3D pattern is not
steady state, but a regime of spiral defect chaos. On the o
hand, Eq.~23! has pathological features such as an asym
tote ats5b11. For Prandtl numbers below this asympto
steady-state solutions never lose stability@3#. In addition, for
large Prandtl numbers, the expression in Eq.~23! increases
linearly with Prandtl number, contradicting experimental

sults that suggest thatr̃ 0 approaches a plateau@30# with a

theoretical upper bound atr̃'13 @31#. Model I is free of
these pathologies of the secondary critical Rayleigh num
as will be seen in the following section.

At Rayleigh numbers just beyondr̃ 0, the 3D Lorenz
model appears to have chaotic solutions similar to thos
the 2D Lorenz model. Rather than probing the 3D Lore
model in the supercritical regime, we turn next to the mo
adequate~for convection! Model I.

B. Analysis of Model I

As in the 2D and 3D Lorenz models, Model I has a co
ductive steady state that loses stability at the critical R
leigh number, Eq.~12!, whose minimal value, 27p4/4, is
achieved at the critical aspect ratioac51/A2. Above the
critical Rayleigh number, there is a regime of stable 2D r
solutions. The analytical form of these solutions is identi
to those in the 2D and 3D Lorenz models; for instance, ro
parallel to they axis have the following form:

x1
25

8

s~11a2!2 S 12
Rc

R D ,
04630
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t
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er
-

,

-

r,

in
z
e

-
-

ll
l
s

u10152x1ARc

R
@s~11a2!#,

u00252S 12
Rc

R D ,

andy15w15u0115u1125u00450. There is an analogous ex
pression for rolls parallel to thex axis. The heat transpor
relation, Eq.~22!, is satisfied by these roll solutions. Squa
solutions, those with symmetric square planforms, exist
appear to be always unstable.

The secondary critical~normalized! Rayleigh numberr̃ 0,
at which the roll solution loses stability, has been estima
numerically fora51/A2 over a range of Prandtl number
Representative values are listed in Table I and plotted in F
3. ~The solid curve in Fig. 3 illustrates the stability curve f
steady-state solutions in the 2D and 3D Lorenz mode!
These results are consistent with those of Daset al. @22# in
Model II, for the parameter region 4,s,12 that they dis-
played in their Fig. 1.

Model I is free of the aforementioned pathologies in t
behavior ofr̃ 0 present in the 2D and 3D Lorenz models. A
very low Prandtl numbers,r̃ 0 approaches a finite valu
around 10.83, and there does not appear to be an asym
in the curve. On the other hand, at high Prandtl numbersr̃ 0
grows very slowly and approaches another finite val
around 18.50. The shape of this curve is qualitatively sim
to the one observed experimentally@30#, with growth at low
Prandtl numbers and approach to a plateau value at
Prandtl numbers.

Beyond r̃ 0, Model I possesses periodic solutions invol
ing ‘‘asymmetric squares,’’ very much similar to those o
served by Daset al. in Model II @22#. The sequence of pat
terns is illustrated in Fig. 4. The periodic solution coexis
with chaotic solutions in the same parameter regime, an
has~at least a small! basin of attraction.

Experimentally, oscillatory ‘‘asymmetric squares’’ con
vection has not been observed. This may be due to a s
basin of attraction for this solution, to the stress-free verti
6-7
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CHRISTOPHER TONG AND ALEXANDER GLUHOVSKY PHYSICAL REVIEW E65 046306
boundary conditions and/or periodic horizontal bound
conditions, or to the severity of the Galerkin truncation. O
cillatory convection of qualitatively different forms~e.g.,
traveling waves propagating along the rolls!, where the am-
plitude of oscillation increases smoothly with Rayleigh nu
ber@32#, are usually observed experimentally. Nonetheles
is still instructive to study the oscillatory ‘‘asymmetri
squares’’ state in Model I, following the lead of Daset al.
@22#.

The Nusselt number for this periodic solution is also p
riodic in time, as was also seen in Model II@22#. The time-
averaged values of Nusselt number calculated at var

TABLE I. Secondary critical~normalized! Rayleigh numberr̃ 0

at which the roll solution loses stability in the modified DG
model.~The critical aspect ratioa51/A2 is used.!

Prandtl number (s) r̃ 0 (60.01)

0.01 10.83
0.1 10.83
0.2 10.84
0.3 10.84
0.5 10.87
1.0 10.97
2.0 11.32
5.0 12.63
10.0 14.31
17.5 15.70
25.0 16.45
37.5 17.09
50.0 17.44
62.5 17.65
75.0 17.80
87.5 17.90
100.0 17.98
103 18.46
104 18.50

FIG. 3. Secondary critical~normalized! Rayleigh numberr̃ 0 as a
function of Prandtl numbers for the 2D and 3D Lorenz model
~solid curve! and Model I ~points!. ~The critical aspect ratioa
51/A2 is used.! The stability boundary for Model I is better be
haved than that for the Lorenz models at very low and very h
Prandtl numbers, qualitatively consistent with experimental ob
vations.
04630
y
-

-
it

-

us

Rayleigh numbers fors51 and 25 are shown in Fig. 5
where the solid curve represents the exact Nusselt num
Eq. ~22!, for the steady-state solution in the parameter
gime where it is stable. The black dots~and gray dots! are
mean Nusselt numbers for the periodic solution where it w
found to exist for Model I and Model II, respectively. I
Model II, periodic solutions were found to exist in a na
rower band of Rayleigh numbers than in Model I. It can
seen that Model II predicts that the Nusselt number actu
starts decreasing as the Rayleigh number is increased
the transition from steady state to periodic motion. This
not consistent with experimental results that show a c
tinual increase in the Nu vsR curve~e.g.,@30#!, as would be
expected based on Le Chatelier’s principle. Model I d
does not have this feature at the transition from steady s
to periodic motion. Fors51, Model I data instead exhibits
discrete transition~abrupt change in slope! at that transition
@Fig. 5~a!#. Furthermore, at a period doubling bifurcatio
~starting atr̃'29) Model I data levels off and even dips
very slight amount asr̃ is increased further. Fors525 there
is a gradual change in slope of the heat transport curve
both models@Fig. 5~b!#, although Model I data is increasin
and Model II data is decreasing. The corresponding mean
for the chaotic solutions is generally higher for a givens and
R.

Experimentally, the idea of discrete transitions in the h
transport curve has been put forth by numerous authors~e.g.,
@30#!, but Koschmieder@18# argues strongly that they do no
really exist for shallow layer experiments~i.e., those per-
formed in containers of very large aspect ratio!. Particularly
relevant to the model results discussed above are the los
~helium! experiments of Ahlers and Behringer@33#, which
support Koschmieder’s argument.~In fact, these studies@33#
found a transition from steady-state to broadband tim
dependent convection, not single-period convection, wh
monitoring the Nu signal.! Therefore, the discrete transitio
seen ats51 in Model I is probably an artifact of sever
truncation.

Finally, it was observed that the amplitude of oscillatio
of the Nu signal generally increases withR in both Model I
and Model II.

IV. CONCLUSION

In this paper, we have studied two simple low-order mo
els for three-dimensional Rayleigh-Be´nard convection:
Model I and its subsystem, the 3D analog of the Lore
model ~Model III!. These models have the form of couple
gyrostats, a structure that prevents certain unphysical be
iors that are manifested in LOMs constructed in a moread
hoc fashion, such as Model II.

The 3D Lorenz model~Model III! is the lowest-order
nontrivial LOM for 3D thermal convection, and as such h
intrinsic interest as a baseline for comparison with all high
order models. Although the 3D Lorenz model leaves much
be desired, it is instructive to know exactly what can a
cannot be accomplished with the simplest model of all.

The physical significance of our work on Model I is th
we have found that the ‘‘asymmetric squares’’ oscillatory s

h
r-
6-8
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FIG. 4. Contour plots of verti-
cal velocity at midplane (z
5p/2) for a periodic solution of
Model I at different times. The pa-

rameters ares510, r̃ 515, and
a51/A2. The time sequence is~a!
→ ~b! → ~c! → ~d!. Axes scales
are nondimensional.
n
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in-
lution discovered by Daset al. @22# is not merely the artifact
of a problematic model. Our improved model eliminates u
physical behavior present in their model, and has heat tr
port behavior more consistent with experimental results
Le Chatelier’s principle. Yet the ‘‘asymmetric squares’’ sol
tion ~not yet observed experimentally or in other theoretic
computational studies! persists in our improved model. Thi
is evidence that further investigation of the ‘‘asymmet
squares’’ oscillation may hold promise.
04630
-
s-
d

l/

The formal analogy between rigid body mechanics a
fluid dynamics is well known~e.g., @26,34#!. However, its
manifestation in low-order models is usually in terms
coupled Euler gyroscopes, first suggested by Obukhov@9# to
satisfy his requirements forhydrodynamic type systems: qua-
dratic nonlinearity and conservation of energy and ph
space volume in the absence of forcing and dissipation.
roscope ‘‘triplets’’ are also encountered in studies of nonl
ear triadic interactions of helical waves@35#. However, the
umerically
d to the
FIG. 5. Time-averaged Nusselt number~ratio of convective heat transfer to conductive heat transfer! for certain solutions of Models I and

II, as a function of~normalized! Rayleigh numberr̃ for Prandtl numberss51 ~a! and s525 ~b!, assuminga51/A2. The solid curve
represents the Nusselt number of the steady-state roll solutions in the regime where they are stable. The black dots are the n
computed mean Nusselt numbers for periodic solutions of Model I when they are known to exist. The gray dots correspon
corresponding data for Model II.
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use of gyrostats allows a more general type of ‘‘triple
containing both nonlinear and linear terms, to be used
building blocks for LOMs.~The linear ‘‘gyrostatic’’ terms
are needed to describe the effects of thermal forcing, a
lustrated in any LOM of Rayleigh-Be´nard convection, as
well as effects such as rotation, topography, and magn
field @13,16#.! The use of coupled gyrostat LOMs may not
limited to the case of free-slip boundaries. Niederla¨nder
et al. @36# found that the Lorenz model~a single gyrostat
@11#! is still usable in the rigid boundaries case.

The gyrostat analogy is not confined to low-order mode
but occurs in a number of other areas in physics@37#. For
instance, there are gyrostat analogies related to the dyna
of solid bodies with fluid-filled cavities@13,38#, the static
equilibrium of Euler elastica@39# and DNA molecules@40#,
the polarization dynamics of an optical pulse in a nonlin
c-

-

-

ys

d

04630
s

il-

tic

,

ics

r

medium @41#, and quantum mechanics@42#. The Lorenz
model, a special case of the gyrostat@11#, itself has analogies
in a number of diverse areas in physics@43#. Although much
work in nonlinear dynamics is associated with coupled os
lators, it is suggested that coupled gyrostats should also
ceive attention as a fundamental nonlinear system.
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